木星(太阳系八大行星之一)

简介

木星是距离太阳第五近的行星,也是太阳系中体积最大的行星,截至2019年已知有79颗卫星。中国称木星为岁星,取其绕行天球一周为12年,与地支相同之故。到西汉时期,《史记‧天官书》作者天文学家司马迁从实际观测发现岁星呈青色,与“五行”学说联系在一起,正式把它命名为木星。

木星是颗巨行星,质量是太阳的千分之一,但却是太阳系其他行星质量总和的2.5倍。太阳系的行星中,木星和土星是气体巨星(天王星和海王星是冰巨星)。从地球看木星,它的视星等可以达到 -2.94等,已经可以照出阴影,并使它成为继月球和金星之后,是夜空平均第三亮的天体(火星在其轨道的特定点上时能短暂与木星的亮度相比)。

早期飞掠木星的探测器有先驱者号和旅行者号各2艘,后来环绕木星探测的伽利略号、朱诺号,以及借用木星引力加速飞往冥王星的新视野号。未来仍将有不少探测木星系统的太空任务。

中文名木星轨道倾角1.303度
外文名Jupiter升交点经度100.464度
别名岁星远日点5.4588天文单位
分类行星/类木行星/气态巨行星近日点4.9501天文单位
质量1.8982✕1027kg平均公转速度47051km/h
平均密度1.326g/cm³会合周期398.88天
直径139822km(平均直径)极半径66854km
表面温度-108℃扁率0.06487
逃逸速度59.5km/s表面积6.1419×1010 km2
反照率0.503体积1.4313×1015 km3
视星等-2.94至-1.66等表面重力24.79 m/s2
自转周期9小时55分30秒表面气压2-200 千帕
半长轴5.2044天文单位卫星数量已知有79颗
离心率0.0489大气成分氢气、氦气、甲烷、氨、重氢、乙烷、水
公转周期11.862年卫星发现者伽利略,甘德等
平近点角20.020度转轴倾角3.13°

组成成分

木星的高层大气是由体积或气体分子百分率约88-92%的氢和约8-12%的氦所组成。由于氦原子的质量是氢原子的四倍,探讨木星的质量组成时比例会有所改变:大气层中氢和氦分别占了总质量的75%及24%,余的1%为其他元素,包括微量的甲烷、水蒸气、氨以及硅的化合物。另外木星也含有微量的碳、乙烷、硫化氢、氖、氧、磷化氢、硫等物质。大气最外层有冷冻的氨的晶体。木星上也透过红外线及紫外线测量发现微量苯和烃的存在。

木星大气层中氢和氦的比例非常接近原始太阳星云的理论组成,然而,木星大气中的惰性气体是太阳的二至三倍,高层大气中的氖只占了总质量的百万分之二十,约为太阳比例的十分之一,氦也几乎耗尽,但仍有太阳中氦的比例的80%。这个差距可能是由于元素降水至行星内部所造成。

由光谱学分析而言,土星被认为和木星的组成最为相似,但另外的气体行星、天王星与海王星相较之下所含氢和氦的比例较低,由于没有太空船实际深入大气层的分析,除了木星之外的行星至今仍没有重元素数量的精确数据。

质量大小

木星的质量是太阳系其他行星质量总和的2.5倍,由于它的质量是是如此巨大,因此太阳系的质心落在太阳的表面之外,距离太阳中心1.068太阳半径。虽然木星的直径是地球的11倍,非常巨大,但是它的密度很低,所以木星的体积是地球的1321倍,但质量只是地球的318倍。木星的半径是太阳半径的十分之一,质量只为太阳质量的千分之一,所以两者的密度是相似的。”木星质量”(MJ或MJup)通常被做为描述其它天体,特别是系外行星和棕矮星,的质量单位。因此,例如系外行星HD 209458 b的质量是0.69MJup,而仙女座κb的质量是12.8MJup。

理论模型显示如果木星的质量比现今更大,而不是仅有的质量,它将会继续收缩。质量上的些许改变,不会让木星的半径有明显的变化,大约要在500地球质量(1.6MJup)才会有明显的改变。尽管随着质量的增加,内部会因为压力的增加而缩小体积。结果是,木星被认为是一颗几乎达到了行星结构和演化史所能决定的最大半径。随着质量的增加,收缩的过程会继续下去,直到达到可察觉的恒星形成质量,大约是50MJup的高质量棕矮星。

然而,需要75倍的木星质量才能使氢稳定的融合成为一颗恒星。最小的红矮星,半径大约只是木星的30%。尽管如此,木星仍然散发出更多的能量。它接受来自太阳的能量,而内部产生的能量也几乎和接受自太阳的总能量相等。这些额外的热量是由开尔文-亥姆霍兹机制通过收缩产生的。这个过程造成木星每年缩小约2厘米。当木星形成的时候,它比现在要略大一点。

内部结构

木星可能有一个石质的内核,被一层含有少量氦,主要是氢元素的液态金属氢包覆着。内核上则是大部分的行星物质集结地,以液态氢的形式存在。这些木星上最普通的形式基础可能只在40亿帕压强下才存在,木星内部就是这种环境(土星也是)液态金属氢由离子化的质子与电子组成。在木星内部的温度压强下氢气是液态的,而非气态,这使它成为了木星磁场的电子指挥者与根源,木星的磁场强度大约10高斯,比地球大10倍。同样在这一层也可能含有一些氦和微量的冰。木星还是天空中已知的最强的射电源之一。

木星内部的温度和压力,由于开尔文-亥姆霍兹机制稳定地朝向核心增加。在压力为10帕的”表面”,温度大约是340 K(67 °C;152 °F)。在氢相变的区域 -温度达到临界点- 氢成为金属,相信温度是10,000 K(9,700 °C;17,500 °F),压力的200GPa。在核心边界的温度估计为36,000 K(35,700 °C;64,300 °F),同时内部的压力大约是3,000-4,500GPa。

云层

木星的大气组成中,按分子数量来看,81%是氢,18%是氦,按质量则分别是75%和24%。只有约1%左右的其他气体,其中包括甲烷、水蒸气、氨气等。这与太阳系的前身-原始太阳星云的组成相近,但木星中较重元素的比例却比原始太阳星云多数倍。同为气体行星的土星也是类似的组成,但天王星及海王星中的氢和氦就少得多。由于木星有较强的内部能源,致使其赤道与两极温差不大,不超过3℃,因此木星上南北风很小,主要是东西风,最大风速达130~150米/秒。木星大气中充满了稠密活跃的云系。各种颜色的云层像波浪一样在激烈翻腾着。在木星大气中还观测到有闪电和雷暴。由于木星的快速自转,因此能在它的大气中观测到与赤道平行的、明暗交替的带纹其中的亮带是向上运动的区域,暗纹则是较低和较暗的云。

木星表面有红、褐、白等五彩缤纷的条纹图案,可以推测木星大气中的风向是平行于赤道方向,因区域的不同而交互吹著西风及东风,是木星大气的一向明显特征。大气中含有极微的甲烷、乙炔之类的有机成份,而且有打雷现象生成有机物的机率相当大。

大红斑与涡旋

木星的大红斑位于南纬23°处,东西长4万公里,南北宽1.3万公里。探测器发现,大红斑是一团激烈上升的气流,呈深褐色。这个彩色的气旋以逆时针方向转动。在大红斑中心部分有个小颗粒,是大红斑的核,其大小约几百公里。这个核在周围的反时针漩涡运动中维持不动。大红斑的寿命很长,可维持几百年或更久。大红斑的豔丽红色令人印象深刻,颜色似乎来自红磷。

鹅蛋形物体的自转是逆时针方向,周期大约是六天。大红斑的维度是24,000至40,000千米 X 12,000至14,000千米。它的直径大到可以容得下2至3颗地球。这个风暴的最大高度比周围的云层高出约8km(5mi)。

风暴通常都发生在巨行星大气层的湍流内,木星也有白色和棕色的鹅蛋形风暴,但较小的那些风暴通常都不会被命名。白色的鹅蛋倾向于包含大气层上层,相对较低温的云。棕色鹅蛋形是较温暖和位于普通云层。这种风暴持续的时间可以只有几个小时,也可以长达数个世纪。

卫星家族

木星是人类迄今为止发现的天然卫星最多的行星,已发现69颗卫星。木星运动正逐渐地变缓。同样相同的引潮力也改变了卫星的轨道,使它们慢慢地逐渐远离木星。木卫一,木卫二,木卫三由引潮力影响而使公转共动关系固定为1:2:4,并共同变化。木卫四也是这其中一个部分,在未来的数亿年里,木卫四也将被锁定,以木卫三的两倍公转周期,以木卫一的八倍来运行。木星的卫星由宙斯一生中所接触过的人来命名。

木卫可分为三群:最靠近木星的一群——木卫十六、木卫十四、木卫五、木卫十五和四颗伽利略卫星等8颗轨道偏心率都小于0.01,顺行,属于规则卫星;其余均属不规则卫星。离木星稍远的一群卫星——木卫十三、木卫六、木卫十及木卫七,偏心离为0.11~0.21,顺行。离木星最远的一群——木卫十二、木卫十一、木卫八及木卫九,偏心率0.17~0.38、逆行。木卫一、木卫二、木卫三、木卫四于1610年由伽利略发现,称为伽利略卫星。1892年巴纳德用望远镜发现了木卫五其他卫星都是1904年以后用照相方法陆续发现的。“旅行者号”飞船于1979年发现了木卫十四,1980年又先后发现木卫十五和木卫十六。除四个伽利略卫星外,其余的卫星半径多是几公里到20公里的大石头。木卫三较大其半径为2631公里。木星的四个伽利略卫星和木卫五的轨道几乎在木星的赤道面上。

表面磁场

木星的磁场强度是地球的14倍,范围从赤道的4.2高斯(0.42mT)到极区的10至14高斯(1.0-1.4mT),是太阳系最强的磁场(除了太阳黑子)。这个场被认为是由涡流产生的 -旋流运动的导电材料- 核心的液态金属氢。在埃欧卫星的火山释放出大量的二氧化硫,形成沿着卫星轨道的气体环。这些气体在磁层内被电离,生成硫和氧的离子。它们与源自木星大气层的氢离子,在木星的赤道平面形成等离子片。这些片状的等离子与行星一起转动,造成进入磁场平面的变形偶极磁场。在等离子片内的电流产生强大的无线电讯号,造成范围在0.6至30MHz的爆发。

木星磁层的范围大而且结构复杂,在距离木星140-700万公里之间的巨大空间都是木星的磁层;而地球的磁层只在距地心5~7万公里的范围内。木星的四个大卫星都被木星的磁层所屏蔽,使之免遭太阳风的袭击。地球周围有条称为范艾伦带的辐射带,木星周围也有这样的辐射带。美国的“旅行者1号”还发现木星背向太阳的一面有3万公里长的北极光。1981年初,当“旅行者2号”早已离开木星磁层飞奔土星的途中,曾再次受到木星磁场的影响。由此看来,木星磁尾至少拖长到了6000万公里以外。

木星的磁气圈分布范围比地球磁气圈的范围大上100多倍,是太阳系中最大的磁气圈。由于太阳风和磁气圈的作用木星也和地球一样在极区有极光产生,强度约为地球的100倍。

星体运动

木星是行星中唯一与太阳的质心位于太阳本体之外的,但也只在太阳半径之外7%。木星至太阳的平均距离是7亿7800万千米(大约是地球至太阳距离的5.2倍,或5.2天文单位),公转太阳一周要11.8地球年。这是土星公转周期的五分之二,也就是说太阳系最大的两颗行星之间形成5:2的共振轨道周期。木星的椭圆轨道相对于地球轨道倾斜1.31°,因为离心率0.048,因此近日点和远日点的距离相差7,500万千米。木星的轨道倾角相较于地球和火星非常小,只有3.13°,因此没有明显的季节变化。

木星的自转是太阳系所有行星中最快的,对其轴完成一次旋转的时间少于10小时;这造成的赤道隆起,在地球以业余的小望远镜就可以很容易看出来。这颗行星是颗扁球体,意思是他的赤道直径比两极之间的直径长。木星的赤道直径比通过两极的直径长9,275km(5,763mi)。

因为木星不是固体,他的上层大气有着较差自转。木星极区大气层的自转周期比赤道的长约5分钟,有三个系统做为参考框架,特别是在描绘大气运动的特征。系统I适用于纬度10°N至10°S的范围,是最短的9h50m30.0s。系统II适用于从南至北所有的纬度,它的周期是9h55m40.6s。系统III最早是电波天文学定义的,对应于行星磁层的自转,它的周期是木星的官方周期。

撞击事件

1993年3月24日,美国天文学家尤金·苏梅克和卡罗琳·苏梅克以及天文爱好者戴维·列维,利用美国加州帕洛玛天文台的46厘米天文望远镜发现了一颗彗星,遂以他们的姓氏命名为苏梅克-列维9号彗星。这颗彗星被发现一年零两个多月后,于1994年7月16日至22日,断裂成21个碎块,其中最大的一块宽约4公里,以每秒60公里的速度连珠炮一般向木星撞去。

2009年7月21日,澳大利亚一位业余天文爱好者安东尼·卫斯理,在凌晨1点利用自家后院的14.5英寸反射式望远镜发现木星被彗星或者小行星撞击,在木星表面留下地球般大小的撞击痕迹。美国航空航天局喷气推进实验室在20日晚上9点证实了卫斯理的发现,并于21日证实木星在过去相当短一段时间内再次遭遇其他星体撞击,使木星南极附近落下黑色疤斑撞击处上空的木星大气层出现一个地球大小的空洞。

2010年6月3日,澳洲的业余天文学家天文爱好者观测到一颗彗星的撞击,造成小于以前观测到的事件。稍后,另一位菲律宾的业余天文学家也录影捕捉到这次事件。

外星生命

在1953年,米勒-尤里实验证明了闪电和存在于原始地球大气中的化合物组合可以形成有机物(包括氨基酸),可以做为生命的基石。这模拟的大气成分为水、甲烷、氨和氢分子;所有的这些物质都在现今的木星大气层中被发现。木星的大气层有强大的垂直空气流动,运载这些化合物进入较低的地区。 但在木星的内部有更高的温度,会分解这些化学物,会妨碍类似地球生命的形成。

在木星,因为在木星的大气层中只有少量的水,还有任何的固体表面都在深处压力极大的地区,因此被认为不可能存在任何类似地球的生命。在1976年,在航海家任务之前,曾经假设基于氨与水的生命可能在木星大气层的上层进化。这一假设是基于地球的海洋态环境,顶层有简单的光合作用浮游生物,低层的鱼可以喂食这些生物,而肉食的海洋生物可以猎食这些鱼。

在木星的一些卫星,地表之下可能有海洋存在,导致这些卫星更可能有生物存在的猜测。

未经允许不得转载:呆小帽百科 » 木星(太阳系八大行星之一)
分享到:
赞(3)

评论抢沙发